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MIKl?lIODFOR CALCULATION OF HEAT TRANSFER IN LAMINAR

FLOW AROUND CYLlX13ERSOF ARBITRARY CROSS SECTION

Lmca mmmioRE DIFFERENCES AND TRANSPIRATION

By E. R. G. Eckert and John

SUMMARY

REGION OF AIR

(~CLUDIITG

COOLING)

N. B. Livingood

The solution of heat-transfer problems has become vital for many
aeronautical applications. The shapes of objects to be cooled can
often be approximated by cylinders of various cross.sectionswith flow
normal to the axis as, for instance, heat transfer on gas-turbine blades
and on airfoils heated for deicing purposes. A laminar region always
exists near the stagnation point of such objects.

A method previously presented byE. R. G. Eckert
lation of local heat transfer =ound the periphery of
trsry cross section in the laminar region for flow of
stant property values with an accuracy sufficient forI

permits the calcu-
cylinders of arbi-
a fluid tith con-
engineering

purposes. The metiod is based on exact solutions of the boundary-layer
equations for incompressiblewedge-type flow and on the postulate that

{ on any location of the cyl.imderthe boundary-layer ~owth is the same as

I that on a wedge with comparable flow conditions. This method is extended

I herein to take into account the influence of large temperature differ-
1 ences between the cylinder wall and the flow as well as the influence of

I transpiration cooling when the same medium as in the outside flow is used
as coolant. Prepared charts make the calculation ~rocedure very rapid.
For cylinders with solid walls and elliptic cross section, a comparison

\

\
is made between the results of calculations based on the presented method
and the results of calculations by other known methods as welJ as of
experimental investigations.

111’lRODUCIZONI

I A calculation of heat transfer to cylinders with arbitrary cross
section in an air flow normal to the axis by a solution of the boundary-

[ layer equations is a d3fficult problem, even for the Euninar region. The
problem is especially compl.icatedby the large number of parameters
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2 NACA TN 2733

influencing heat *f er. Such parameters are the shape of the cross
section of the ‘cylinder,the Mach nuniberwhich determines the flow out-
side the boundary layer, the temperatures on the surface M the cylinder
as well as in the stream, the stream velocity determining the internal
heat gen=ation, and the temperate Ustribution around the circumfer- ,
ence of’the cytider. If the cylind- is cooled by the transpiration-
cooking method in which a coolant is ejected through the porous surface
into the outside Stresmj the amount of coolant and its distribution (
sround the circund’erenceof the cross section of the cylinder sre addi-
tional parameters. Even if a solution is obtatied for such a problem, 3
for instance by use of an electronic computer, this solution is very (u

restricted because of the many parameters. Up to the present the,
therefore, the problem has been attacked only under simplifying
restrictions.

The restrictions most commo~ used me: (1) low velocities, (2)
constant property values, (3) constant wa~ temperatmes, and (4) imper-
meable s@aces (no transpiration cooling). Under restriction (2), the
development of the boundary layer along the cylindrical surface is tide-
pendent of the heat transfer; available knowledge on the flow boundary -
layer can therefore be used as a basis for a heat-transfer calculation.
Under the simpMf@ng assumptions, which are necessary in order to
transform the general viscous-flow equations into the boundary-layer
equations, the development of the flow boundary layer does not depend
hmnedSately on the shape of the cross section of the cylinder, but only
on the veloeity distribution in the stream outside the boundary layer
and along its surface.

.

One method which was a~13ed successfully to obtain a solution of
the flaw boundary-layer equation developed the stream velocity along the
surface of the cylinder in a power series of the distance from the stag-
nation point measured along the circumf~ence of the cylinder. In ref-
erence 1 this method is wed to solve the heat-transfer problem. It iS
also shown that the temp=ature field within the boundary layer can also
be presented in a power series of the distance from the stagnation point
in which the single terqs contain only universal functions of a dimen-
sionless wall distance and of the ??randtlnuniberof the fluid. The heat
transfer to the surface is given by an analogous series with terms
depending on the Prandtl number. The calculation of the universal func-
tions, however, is a iietti.ousprocess, and accordingly these functions
sre lmown oqly for a llmited ntier of terms. For air with a Prandtl
numb= of 0.7, they are presented in reference 1. For a gas with a
l?Mndtl nuniberof 1, they are contained in reference 2, which is based
on reference 3, in which the boundary-layer flow of a yawed cylinder is
calculated. The fact that the boundary-layer equation for the velocity
component parallel to the axis of a yawed cylinder is identical in form
to the boundary-layer equation describtig the temperature field for a
fluid with a Prandtl nuniberof 1, flowing normal to the tis of the

,,

I
I
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cylinder, was used in reference 2 to determine heat transfer to such
cylinders. The presentation of more terms of the series i~ announced in
reference 4. It is folmd, however, that the velocity distribution for

i only a limited range of cross sections of cylinders can be represented

\ by a power series converging rapidly enough that the nuqber of the known
universal functioni3is sufficient to calculate the heat transfer.

The difficulties connected with a solution of the boundary-layer
1’
b

equations point out the need for an appro-te ap~roach which, with-a

P
small.,expenditure of”time, would determine heat-tiansfer coefficients
with an accuracy sufficient for engineering purposes. A considerable ~

14 nuniberof.such approaches were tried in the past with results which
cliffer geatl..yas shown in figure 1, taken from reference 2.

1
The simplest procedure is probably the use of the heat-transfer

coefficients as calcukted in reference 5 for flow along a flat plate
tith a constant velocity. The fact that in rea~ty the stream velocity ‘
varies along the cross section of the cyWider is taken into account by
calculathg the local heat-transfer coefficients with the velocity found
in the stream at the considered distance from the stagnation point.
This method is contained in a summary presented in reference 6. Unfor-
tunately,.such an approach gives heat-tranbfer coefficients which are
considerably 10TT in many cases (see fig. 1). ‘

Better agreement was pbtainedby another approach (reference 7)
which Usesj instead of the flat-plate solution, a family of solutions of
the boundary-layer equations wlrichcm be obtained in a general form,
namely, for the case where the stream velocity varies along the surface
as a certain power of the distmce from the stagnation point. Such a
velocity variation is obtained in incompressible flow around wedges.
The solutions for such a type of flow were used to obtain appromte
heat-tramfel? coefficients for a “cylinderwith arbitrary cross section
by stipulating that the local heat-transfer coefficient on any location
along the cylinder is identical to the local heat-transfer coefficient
on a wedge for which, at the same distance from the s-tion point$ “
the stream velocity and its gradient are the same as those on the inves-
tigated cyMnder. This approach was s~sequentl.y used”by different
authors, and is described, for instance, in references 8 and 9. It
takes into account the stream conditions which influence the boundary-
layer growth at the location at which the heat %ransfer is going to be
determined; however, it does not propa~ account for the development of
the boundary layer in the range upstream of the point considered. This
development maybe different on the cylinder and on the equivalent wedge.

Another group uses an inte~a>d momentum equation for the boundary-
layer flow as proposed by von Karnmn and K. Rohlhausen (references 10
and U.) to calctite the velocity boundary layer. DMferent procedures
were proposed to determine local heat-transfer coefficients from the .

L_ _ . ___ .— . . . . . . . . . .——.— .—= . - —— .- —- ___ _._. — —— . . . —. ..-
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Iumwn velocity boundary
directly (reference 12)
from 1 (reference 13).
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.
layer. Some investigators use Reynolds analogy
or with a correction for Prandtl numbers different
Such approaches give heat-transfer coefficients

which are considerably high in many cases, as shown, for instance, in fig-
ure 1. More accurate results were obtained when the heat transfer was
determinedly solving an integrated-heat-flowequation for the boundary
layer. The velocity field within the boundary layer has to be lmown in
this approach, since the flow velocities within the boundary layer occur
in the mentioned heat-flow equation. This method was cmiginatedby
K&ouji13ne (reference 14). Extmions and shplifications are contained
in references 15 to 18 and an @ension to compressible flow of a fluid
,with a Prandtl nuaber equal to 1 is found in references 19 and 20. Use-
ful tiormation is also contained in a summsrizing report (reference 21).

Another approach starts from a consideration of the fact that the (
use of the heat-transfer coefficients for wedge-type profiles as
described previously was foundto give heat-tramsfer coefficients with
a fairly good accuracy. It shouldbe expected that the%e heat-transfer
coefficients can be @roved to a degree which is sufficient for all. !8

I
engineering purposes by a method which takes into account in some approx--
ha.te way the previous history ’ofthe boundsxy layer. Such a method,

1,

called the equivalent wedge-type flow methmi, was proposed in refer-
ence 22, extended to heat transfer at high flow velocities and variable
wall temperate h reference 23, and extended to transpiration cooling

)

with small temperature differences h reference 24. The advantages of
this method are that no lmowledge of the velocity boundary layer is
reqtied and that it can be readily *n&d to take into account the
effects of large temperature differences, of transptiation cooling, and
of variable wall temperature as soon as the correspond@ solutions for
the wedge-type flow sre available.

This report presents such an etiension, made at the l?ACALewis lab-
,

oratory, which includes the effects of large temperature differences and
of transpiration cooling. It is based on exact boundary-layer solutions
for wedge-type flow with large temperature differences and with trans-
piration cooling (reference 25). Charts were prepared which make the
calculation of heat ta%nsfer around cytiders of any arbitrary cross
section more rapid.

SOLUTION OF BOUNDARY-LAYER EQUATIONS ’FORWEDGE-TYPE FLOW
(

Boundary-Iayer Equations

The following boundary-layer equations describe the velocity and
temperature fields in a laminar steady two-dimensional gas flow: the
momentum equation, the continuity equation, and the energy equation.
The momentum equation is ,;

—___ ———... —— .—. _____ . . .—
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when body forces
consistent units
variation normal

(1)

=e neglected. (All symbols are defined in appendix A;
are used throughout the report.) Since the pressure
to the surface throughout the boundary layer maybe

neglected, it follows that the press&e is prescribed ~y tie con&tions
in the stream outside the boundary layer and canbe connected with the
velocity us in the stream and just outside the boundary La$w?bythe
Bernoulli.equation

b au8

-x = PBS ~

The introduction of tlds expression changes the momentum equation to the
form

The continuity equation is

& (Pu) + $ (Pv) = o
I

and the energy equation is

The heat generated by internal friction, described by

(2)

?P
‘&i (4)

(3)

the second term on
the right side of equation (4), and the temperature varidtion connected
with expansion, described by the third term, can be neglected as long as
the difference between the total and the static tempwature in the gas
stream is small compsmed with the difference between the wall temperature
and the temperature in the gas stream. l?orthis condition, then, only
the ftist term on the right
energy equation assumes the

side of equation (4) is retained, and the
fOrm

(5)

Equations (2), (3), and (5) include the case of transpiration cool-
when the same medium as that in the outside flairis used as coolant
the boundary cotitions sre properly defined.

_— .- . . .. . . . ..— ..———. . .-.-.. —... .-.—.-.— —— -—--.—- —— —- —— --- —-
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“u= O,v=vw, and T=TW when Y=O
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.

(6)

U+US and T+T~ when Y+m d

The property values p, k, ~j and p appearing in the equations depend
on.tempmture and pressure. The variation with pressuce can be neg-
lected at the small velocities to which the enera equation was already
restricted by disregarding the titernal friction and the expansion terms. I

The influence of the temperature dependency, however, may be appreciable 3!
in applications with large temperature differences within the boundary N!

layer● Solutions of the boundary-layer equations which take into account
the temperate variation of the property values were obtained in ref-

II

erences 9 and 25, in which the partial differential equations were
transformed into total clifferential equations’.

me of Variables

The trau.sformationof the psrtial differential equations into total
differential equations is possible under the following specia13.zedcon-
Utions : The stream velocity is assumed to vary as a power function of
the distance from the stagnation point measured along the surface of the
cylinder.

(7)

It has recently become customary to refer to the exponent m in this
equation as “Euler number.” The Euler number can be expressed by the
Bernoulli equation in the following way:

m.-%
pJ182

x

(8)

In addition, the temperature of the wall is assumed to be constant and
the property values are assumed to vary proportionally to a power of ~
the absolute temperature T. The numerical calculations were made for
*. The exponents used were 0.7 for the viscosity, 0.85 for the heat
conductivityy, 0.19 for the specific heat, and -1.0 for the density.
The variables

.— .— ——-— .. —.— — ————— -—— -—— -- . . . . . . . . . .
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Pwv ‘

‘“*

(9)

are used to transform equations (2)~ (3)~ and (5) tito total clifferen-
tial equations presenting f and e as functions of q only. The
stream function ~ appesring in equations {9) is defined in such a way
as to el.indnatethe con.timuityequation (3)’.

a(pw~)
pu=—

b’

a(pw~)
PV =-T

(10)

Introducing the new -tibles into the second of equations (10) leads
to the fol.lbwingexpression fcm the velocity compment normal to the

I surface: . .

t
-’v”+fi=+~f’‘“-4

The velocity at the surface itself follows:

(IL)

(U)

The transformation therefore Wescrihes a certiti variation of the cool-
ant velocity vw along the sm?face, since the function fw has to be
constant (independent of x). Simce the stremn velocity is described
by eqyation (7), the coolant velocity Vw is also Prolotiional to SOme
power of x= It is shown in reference 26 that such a variation of the
coolant velocity leads to a constant wall temperature and is therefore “

I consistent with the assumed conAant wall temperature when heat transf=
by radiation may be neglected. The transformed equations are presented
in references 9 and 25, together with the solutions for a Rrandtl num-
ber Pr of 0.7, and for a range of Euler number m, temperature ratio
T~/~, @ the parameter fw describing the cooling-air flow through

\

———. ———— —.—.-. . .. —----- ..- . .. ---- .— —-. —.-— — .—. .—— ——. .—— --- .-— ——
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the porous surface.
of the flow boundary
placement thickness1

.

The results
~yel? which

contain expressions for the thiclmess
are defined in two ways: the ais-

and the momentum thichess

The thermal boundary layer is
vection thickness

In
is

tjc=

(l?i)

5’
Cu

(14)

charactmized in ttis report by the con-

Pm

~

T-Ts
Q% —w

~ PSUS ~-Ts
(15)

addition, a thermal boundary-layer thidmess will be used herein and
defined in the following way:

(16)

Values for this boundary-layer thickness can be easily calculated from
results presented in reference 25.

Ap@ication to High Velocities

The solutions described apply exactly only to flow with small
velocities. Practically, the limiting velocity up to which it is Ios-
sible to neglect the frictional and the exjymsion terms can be set quite
high for a gas; this fact can be understood from the following trans-
formation of the ener~ equation, in which only the specific heat is
regarded constant. H the momentum equation (1) is multip~ed by the
velocity u and added to the ener~ equation (4) and if’lin addition,
%he total temperature ~ = T + Uz/2Cp iS titroduced,

expression is obtained:

the f011.owixlg

—— ——-.. —.—. ---- .-—.— .. . . . . .. .
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The last term on the right side of the equation vanishes for a Prandtl
number equal to 1. In this case, the energy equation has the sqme form

!’
as the one for low velocities in which the friction and the exyansion
terms were neglected. The only difference lies in the fact that the
total.temperature aypears in the energy eqyation. For cases which have
a Prandtl number not too far from 1, the last term in equation (17) wiJJ
be comparatively small w to considerable velocities, and the energy

L
equation (5) used in the following considerations applies to this condi-

‘E

tion when the temperature T is interpreted as total temperature. It
will be shown later that as far as heat transfer is concerned, the range

1’ in which the results of a calculation with equation (5) maybe used can
I be extended even further by using a properly defined adiabatic wall tem-
1 perature instead of the total gas temperature.

The property values P, k, ~, and p depend for gases on the tem-

perature. This dependency was taken into account in the described cal-
culations. The density depends, in addition, on the pressure, and the
pressure variation may become considerable at high Mach nunbers. There
‘are indications, however, that calculations which neglect this pressure
variation can be used with sufficient accuracy over the whole sulsonic
range-,as is pointed out in reference 27 by an investigation of results
obtained by L. Howarth (reference 28).

EXTENSION OF THEORY TO ARBITRARY BODIES

Determination of Equivalent Wedge

The solutions discussed in the previous paragraph are in an exact
sense restricted to a certain type of velocity variation along the
cylindrical surface, namely, a stream velocity which just outside the’
boundary layer is proportional to some power of the distance from the
stagnation point. Such a velocity distribution is realized, for
instance, in incompressible flow around wedges. The wedge-type solu-
tions maybe used, however, to obtain a~roximate heat-transfer coeffi-
cients on cylinders of arbitrary cross section. One approach in this
direction assus that the heat-trmsfer coefficient on any point along
the circumference of a profile mlth arbitrary cross section is the same
as that on a wedge at the same distance from the leading edge, provided
the stream velocity and its gradient on the wedge and on the arbitrsry
Qrofile have the same value at the location considered and that the tem-

1 perature

approach
spot for
ever, it
boundary
transfer

-.—. . .—----—.——.—.

ratio Ts/T1,ri= the same. It will-be shorn”that such an

takes into account the right stream conditions at the local
which the heat-trmsfer coefficient is to be determined. HOTT-
does not properly consider the previous history within the
layer. Numerical calculations presented later show that heat-
coefficients obtained in such a way are in most cases within

0
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about 15-percent agreement vith experimental data. It is to be expected
that a modification whfch accounts in some a~proximate manner for the
conditions in the boundary layer uystream of the point under considera-
tion should -rove this approxhation to the desired de~ee. This mod-
tiication is made in reference 22 by the stipulation that the rate of
increase of the boundary-layer thickness is the same on the considered
point of an arbitrary profile and on the point of a wedge which has
the same boundary-layer thiclmess, the same stream velocity, and the
same stream velocity gradient. This same stipulationwillbe used in (
the present report. For a given te~erature ratio Ts/T~~,the heat-

transfer coefficients on a wedge depend on the Ner nwiber m and the
j’

value fw characterizi~ the coolant flow through the porous surface.

These parameters which define the equivalent wedge profile will now be
expressed by the boundary-layer thickness and the local
gradient.

For the wedge-type profile, the stream velocity is
the power law

stream velocity

expressed by

(18)

in which the value ~ expresses the distance from the leading edge
measured along the wedge surface in order to distinguish it from the
distance of the point under consideration from the stagnation point on
the srbitrary profile, which will be denoted by x. The variables used
for the transformation of the original boundary-layer equations in the
previous section may now be written

and

To a certain value y indicating the bouudary-layer thiclmess 5
belongs a value ~ of the coordinate q defined by the equation

(19)

(20)

(21)

.—— ——— —— — —-. .. ....-— — ——. . ——_._. .._
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I
In
is

I

order to eliminate the distance ~ from this ecymtion, equation (18)
differentiated to obtain

ails
~= mC~m-l = m~

E
(22)

Since the velocity gradient on the wedge profile is assumed the same as
that on the profile under consideration, it follows that ?lu@f= &@x.

This eqyality gives for the coordinate ~ the expression

(23)

When this expression is introduced into eqyation (21), there is obtained

In this e~ression, ~b (denoted as (b/x) Fe in reference 25) is a “
function of the Euler number m and of the coolant-flow parameter fw. .

If this equation is therefore written in the form

I

I
\

I the left side is a

both values to the

~m =

function of m

boundary-layer

p#2 dus
—.

~~ ax

and fw and

thickness 6

(24)

equation (24) relates

and the velocity gradi-
ent du9/dx. In order to obtain a second relation for m and ‘fw, theI
coordinate ~ is replaced in equation (20). The result is

(25)

which is written again in such a way that the left side is a fuaction of
the Euler nuniber m and the flow parameter fw, which canbe calculated
from the results in reference 25. Both eqyations (24) and (25) are
therefore sufficient to determine the equivalent wedge profile.

.

..+— . .— .._— — . .. ... . -——— . . ..-. . ..... ..- —.. — .—..—- ..—. — —— -



12 NACA TN 2733

Eqpations for Boundary-Layer Thickneas and Heat Transfer

The next step is to develop a differential equation for the
boundary-layer thickness from the postulate that the boundary-layer
gradient d5/dx is the ssme for the real profile as for the equivalent
wedge profile. For the wedge profile, the boundary-layer thickness is
given by the expression

which is obtained from equation (21) by replacing the stream velocity
with equation (18) and solving for the boundary-layer thickness. A dif-
ferentiation of this equation and the use of equations (23),and (24)
result in

(26)

This is a differential equation for the boundary-layer thickness which
contains only values which are known for the profile under consideration
or which sre determined from eqmtions (24) and (25) for the equivalent
wedge-type flow. An integration of the differential equation gives the
boundsry layer along the circumference of the profile under consideration.

The local heat-transfer coefficient is defined by the following
equation: .

Introducing the -ionless temperature ratio given in eqyation (9)
and the coordinate ~ results in.

The heat-transfer coefficient may be calculated from this
soon as the boundary-layer thickness b is lmolm, since

ere functions of m and fl~ contained in reference 25.

(27)

expression as
e+ and ~

.— —— ____ — —.-.--— . . . ——.- ..-
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i Up to the present t@, no recommendation has been made as to
which boumdsry-layer thickness should be used in the prescribed proce-

1 dure. When the momentum thiclsnessis used in the foregohg equations,
,

it is easily understandable that the integrated nmmentum equation is
satisfied and the method of calculation becomes the same as the one pro-
posed byvon K&r&n in reference 10. This fact can’be proved mathemati-
cally by a procedure completely analogous to the one used in appendix B.
On the other hand, the use of the convection thickness as deffied in
eqpation (15) satisfies the integrated heat-flow equation within the

Ig boundary layer, as sho%m in appendix B. The use of both boundary-layer
thicknesses leads to somewhat different results for the local.heat-

1 transfer coefficient, and the qmstion arises as to which is preferable.
It is pointed out by Schuh in reference 23 that for the purpose of deter-
m~g heat-transfer coefficients it is more important to sa.tisfythe
heat-flow balance, and the use of the convection thickness was therefore
recommended. In reference 22, the use of the them boundary-@yer
thickness as defined in equation (16) is investigated, and the results
of the Cal.c&ation with this boundary-layer thiclmess are found to

. agree even better with measured values and tith other calculations. The ‘
convection thickness 5C and the thermal thickness bt for the boun-

dary layer will therefore be used in
evaluations.

I CALCULATION

parallel in the following numerical

PROCEDURE
e

I Use of Dimensionless

I The procedure which maybe followed
transfer coefficients with the relations
tion is now explained. Figure 2 shows a

Vsriables

in determining local.heat-
developed in the@eceding sec-
sketch of a cylinder with arbi-

,[ trary cross section and the notation used in the anal.~is. Before
numerical calculations are tide, however,I it is advisable to change to

I dimensionless cpsmtities. In order to make this change, the distance x
is diw@ed by the major @s L of the cylinder and the mass velocity

I
in the direction of x is dividedby an upstream mass velocity. All
lengths and mass velocities parallel to y are, in addition, multiplied
by the square root of the Reynolds nunber ReO based on the major axis.

and the upstream mass velocity. The dimensionless variables which are
subsequently needed are

X*+ (28)

(29)

.

.

.——.—.— . —.——.——— -—



14

* Pwu~
‘s =

Po”s,o

where

*
‘w = ‘Wvw6

Po”s,o

,

NACA TN 2733

.

(30)

(31)

(32)

By use of these dimensionless qmntities, equation (26) is transformed
into

where

l-m 2
(

du; *2
M=— 2% )

.M =5 )v;~*

(33)

(34)

according to equations (24) and (25), Which, in dimensionless values,
are

du;
~zm = ~. 5’2

u

and

Introduction of the dimensionless
leads to

where

and

V$ *

quantities into equation (27)

Nu N—= — (35)

‘u=: (36)

(

‘% *2

)
N=~~=N~5 ,v$” (37)

. .—... ———_.— ____________ ___ .— —.._ ___ ._. _
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Charts and Calculation Procedure for Prescribed Coolant Flow

(!hsrtshave been prepared which present the functions M and N as
expressed by equations (34) and (37) in dependence on (d~/ti*)b*2 and
V;8*. When the values presented in reference 25 were considered for the
construction of these charts, it was found that in certain cases one of
the free-stresm boundsry conditions was.not fuJ3?illed. This same condi-
tion had been overlooked by other previous investigators. As a conse-
quence, spot recalculations were made; it was found that the maxb
error in Nu/~o resulting from these recalculations was of the order
of 6 percent. Consequently, no attempt was made to recalculate the entire
field because of the large amount of labor involved. The charts presented
herein were constructed from a combination of these recalculations and
results presented fi reference 25. Even though all.recalculations were
not made, it is believed that the charts as presented will give results
with sn accuracy of the order of 2 or 3 percent. Ih figmes 3 and 4, the
dimensionless convection thicbess of the boundary layer is used; h fig- .
ures 5 and 6, the dimensionless thermel boundary-layer thi.~ess is used.

At the stagnation point of any blunt-nosed cyltidricsl body, con-
ditions are the same as those at the stagnation point of a plate normal
to the flow. Therefore m= 1, but the value of 5* is unknown.
However, there exists at the stagnation point a unique relation
vP* = F[(dus*/dx*)5*2] which may, for instance, be read along the

abscissa in figure 3 or Q figure 5. Squaring this eauation and dividim
both sides by ~d@dx*)5*Z r&lt in - -

These relations ae presented in figure 7 for the
tionboundary-1.ayer thickness ma h figure 8 for
thermal boundary-layer thickness.

By use of these charts, the calculations for

dimensionless convec-
the ~nsionless

-Y Profile canbe made
in a very simple manner for-eitha the dimensionless-c&vection or the
dimensionless thermal boundary-layer thickness. The method of solution
for the convection thicknesses is described subsequently. For the
thermal thickuess, the procedure is the same.

The values of us and du9/dx must be found for the cylinder pro-
file under consideration either by measurement or by a solution of the
tiviscid-flow equations. The coolant velocity Vw is presmibedby the

porosity of the wall andby @e pressure distribution mound the profile.
From these terms, the values of ~, d~*/dx*, and V$ canbe calcu-

culated. The value of a: ,atthe stagnation point can be determined “

— . . .———...-——-— .— —-~ -T——--- - -.—.-— _____.-
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.~T$2
from figure 7 in the folJmwing way: The value of is computed,

du$/ax*

and the corresponding value of (du~/dx~ 15~2 is read from figure 7. A

shple algebraic operation then fields the desired value of 5$ at the
stagnation point.

The CLbnensionlessconvection boundary-layer thickness 5: along
the cylindrical surface is determined from equation (33); for the
numerical evaluation presented herein, this equation was solved by the
method of isoclines with the aid of figure 3, depending upon which ratio ~’

of stream to wall tauperature applied. Equation (33) determines the
direction of the tangents to the different b~-curves which satisfy the
equation. The task is to find that curve which contains the b~-value
previously calculated for the swtion point. For chosen values of x*
and 5:, values of (d~*/dx*) 5C 2 and v~@~ are computed and the

value of M is read from the appropriate Part’of figure 3. Equation (33)
then gives the slope of the tangent at this selected value of x* for
the assumed b;. Several values of b: are usedf~ this x*. The

same calcuhtions are repeated fqr other values o’f x*. H the dis~ce
between these x*-values is chosen small enough, an accurate curve of
8; against x* can be drawn which s-ts at the desired previously
calculated value of b: at the stagnation point and which will have the
correct slope at each value of x* considered. Figure 9 illustrates
this method of solution. Values of N can thenbe obtained for each of
the correct b~-values and the considered v~~-valuefor each X* from

figure 4 after (d~/dx~ bc*2 and v~~ axe computed (the ratio of

stream to wall temperature under consideration determines which part of
figure 4 shoul.dbe used). The value of Nu/@o can finallybe
obtained from equation (35).

The saqe calculation procedure canbe used when the dimensionless
thermal boundary-layer thickness is considered. Figure 8 is used for
the determination of the value of 5% at the stagnation point; figure 5
is usedto determine M; and figure 6 is used to determine N. The par-
ticular ratio of stieamto wall temperature under consideration deter-
mines wh.ichparts of these figures a~ly for the calculation of the
values of M and N. FinalJy, equation (35) gives the desired value of
Nu/~o .

Charts and Calculation Frocedure for Prescribed Wall Temperature.

The heat-transfer coefficients determined by the values of NU/@o
can nowbe used to calculate the surface temp=ature of the cylinder
when the outside stream temp=ature and the temperature with which the
coolarh is supplied to the in~ior of the cylinder are known. For this
purpose a heat balance for an elanent of the wall-as shown in figure 10

.— ----- _.—___ _. ——..—— .._ —— _______ _.,. , ---
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is set up. The cylindrical volume element considered may have two piane
surfaces, one surface (1) coinciding with the outside sux$ace of the
cylinder wall and the other (2) apart from the @ide surface of the wall
by such a distance that it,is situated outside the boundary layer present
on this side. (The inside surface has to be considered as a surface of
a wall to which suction is applied and on which a boundary layer builds
up as shown in reference 29.) The mantle surface,(3) of the cylinder @y
be normal to the wall.surfaces. Heat is carriedby convection with the
cooling air through swfaces 1 and 2. The amount per unit time is indi- ‘
cated in figure 10. It is assumed that the coolant is heated up to the
wall surface temperature T~T when it leaves the wall. This assmption
is usuallywell fulfilled. Heat .willbe also transferredby conduction
through the fluid layers imme~ately adjacent to the outside wall sur-

faces, the amount being -
4)W

&
& “

h addition, heat maybe trans-

ferred to the outside wall byra&tion; it maybe ~ U. Heat may
also flow into the volume element by conduction in the solid material or
by transverse
flows maybe

The heat -%

flow of the cooling air. The sum of all these individual
Q dll. Then the heat balance is

, wall.was in this report
.

transferred per unit area from the gas to the

expressed by a heat-transfer coefficient

Combining these two equations results in

qr +-u + @s-~) = ~P&(Tw-Tc) (38)

This equation permits a calculation of the wall-temperate for any
place on the cylindrical surface when the coolant velocity Vw is pre-
scribed, when the local radiative heat transfer ~ and the conductive
heat flow ~ are lmown, and when the heat-transfer coefficient h has
been obtained. The conductive heat flow ~ is usually small.and can
be neglected. Such a calculation results in a wall surface temp-ature
which generally will vary along the circumference of the cylinder. When
the variations are large, the,temperature distribution obtained can be
regarded only as an approximation, since the wedge solutions (refer-
ences 22 and 25) on which the method in this paper is based were obtained
for the case of a constant wall temperature.

Usually, however, the problem which faces the designer in an appli-
cation is somewhat different from the one treated. The purpose of

----- . ..-- ——-— — -— _-. -..-.-. — .. —.—— ..~-— ---.. ——-.——— -- ..—— - —— ---—
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transpiration cooling is”mostly to keep the wall temperature of some
structural element below the limits which the material can withstand.
On the other hand, the amount of coolant almost always must be kept
small, which means that local overcooking should be avoided. For the
wall smface under these conditions, a temperature is prescribed which
should be uniform about the circumference of the cylinder and the prob-
lem is to find that distribution of the coolant velocity Vlr which
results in the desired wall temperature. Generally, such an investiga-
tion requires a trial-and-error procedure which is very involved. The
procedure becomes shple and straightforward,howevti, when the radiative $
heat flow ~ and the conductive heat flow ~ can be neglected. Such
a solution then is useful also as a stsxting point for the trial-and- 1
error procedure for.the case when radiation is present.

The heat balance (equation (38)) can be transformed to

p%~vlrT~T-Tc

%f&,o = %%,0 ‘%-%
(39)

when ~r= ~ = 0“ The ratio of temperature differences in this equa-
tion is now a prescribed value. A stilar ratio (Ts-~)/(Ts-Tc) often
appears in turbine-cooling work and is denoted by Q. Introduction of
this value and conversion to dimensionless values results in

(40)

Another expression for Nu/& is given by equation (35). Codining
both equations gives ‘ - -

This equation expresses a relation between the
in figures 4 and 6 which maybe used to insert

(41)

parameters IV and v~~*
lines of constant Q

into ~hese figures. With the use of these lines the calculation pro-
cedwe for any specific problem becomes quite simple. The procedure ,
will be described for Ts/~ = 1 (or near 1) and with the use of the

convection boundary-kyer thiclmess 5C. The prescribed tempmatures
fix the value of q.

At the stagnation point, m = 1 and du~/dx* is known. In fig-
ure 4(a) the intersection between the Mn$ m*= 1*Zand the lJne for the
prescribed ~ determines V:p: =~ (du*/- ) 5C and from both

values, b: and v; may be calculated.

—.-... .Z —.— .— ______ ._ . . ___ .—— ___ .__ ..____ ____
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The method of isoches may a-gainbe used,to determine the develop-
.~ ment of the boundary layer along the cylhirical surface. The use of

this method Wplies that the gadient d8~/dx* has to be determined for

W Pati of values x* and 5;. For an assumed b~, the value v~~1,
can be found in figure 4(a) as the value on the prescribedcp-curveabove
the known abscissa value (du#dx ~ 5;2. Figure 3(a) then gives M
and equation (33), the gadientI db:/dx*. A plot similar to figure 9
dete.radnesthe boundary-layer thiclmess, and the valuesf. V.. belonging

.
:“? to these boundary-layer thichesses represent the coolant-flow distri-
. bution for the particubr temperature-differenceratio ~.

~;

I
1

-ICAL EVALUATIONS AND COMPARISONS WITH KNOWN RESULTS

Solid Surfaces

The results of the outlined procedure to calculate local heat-
, transfer coefficients have to be compared with-experimental results or

calculations by some other method in order to check the accuracy. The
only cylindrical shape for which experimental data or solutions of the
boun~y-layer equations suitable for such a comparison are available
seems to be the cylinder with a cticulsx cross section. Accordingly,
local heat-transfer coefficients were calculated by the method proposed
in this report with the use of the dimensionlessthermal boundary-layer
thickness as well as of the dimensionless convection boundary-layer1

I thiclmess. The’results of these calculations are plotted in figure 11
over the dimensionless distance from the stagnation point.1 Also
inserted in the figure is a cmve representing the average curve through
the experimentally determined local heat-transfer coefficients mentioned
in reference 30. It was shokn in reference 22 that the measurements
correlated we~ into a single curve whenthe experiments ~tithvery high

I Reynolds numbers near the critical value for transition to turbulence
within the boundary layer were excluded. The tests with high Reynolds
numbas gave values of Nu/~ which over the whole upstream sideI
of the cylinder were about 10 percent higher than the ones for the lower
Reynolds nunibers. The same behavior was found in references 31 and 32
in which it is shown that an increase up to 50 percent in the heat-
transfer coefficients over the expecte”dlaminar values was caused by the
turbulence level in the wind tunneh used. The resuJ_tof a solution of
the boundary-layer equation as presented in reference 1 is also included
in figuxe Xl.. This method solves the boundary-layer equations and

t obtains results as a series in the distice along the surface.I Also
imserted are values obtained by use of the Pohlhausen flat-pbte solu-

,- tion when the free-stream velocity is based on the local values and
results obtained by the methods of references 12 and H. Eeat-transfer
coefficients on wedges with the’same local stream velocity and velocity
gadient at the same distance from the stagnation point sxe also included
(reference 8). @pendix C explains how these wedge solutions were
obtained.

——.— . .
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On a cy13nder with a cticuhr cross section, separation occurs in
the subcritical range near the value # = 0.7. The stream velocity
distribution around the surface of the cylinder which was needed for the
calculationswas obtained from pressure distributions given in refm-
ence 30 and is contained in reference 22.

It maybe seen from figure l.1that the use of flat-plate values ‘
results in heat-transfer coefficients which are considerably lower than
experimental values, whereas the methods in references 12 and 13 result
in values which are too high. Much better agreement is found between
the wedge heat-transfer coefficients and the experimental results,
especially near the stagnation point. Farther downstream, the accuracy
is improved by the method of this report. For the largest distance from
the stagnation point, the use of the dimensionless thermal boundary-

, layer thickness results ia values which are higher and the use of the
dimensionless convection thictiess, im values wQ3.chare lower than the
experimental ones. The values calculatedby FYoss13ag’s solution of the
bm#iiary-layer equations sre also higher than the experimental ones.
l&oss13ng’s method has to be considered as an exact solution of the
boundary-1.ayerequations. In referenc~ 22 it is recommended, on the
basis of the good qgeement between JRrosslimg*s curve and the values
obtained by the use of the thermal boundary-layer thickness, that the
method of the equivalent wedge flow be based on the thermal bound.ary-
layer thickness. The values of the heat-transfer coefficients depend
primarily on the velocity distribution in the stream sround the cross
section of the cylinder. The velocity distribution used for the calcu-
lation on the circular cylinder is alao shown on figure il.. The calcu-
lations are made f~ a Prandtl number of 0.7, for a”solid surface
(Vw = O) and a temperature ratio Ts/~T of 1, equivalent to the assump-

tion of constant pzmperty values. These calculations agree within
5 percent with the exact calculation and wi.tltin8 percent with experi-
ment when the hnediate neighborhood of the separation point is excluded.
Simi.Qr comparisons have already been made in reference 2 for a gas with
a Prandtl nunher of 1 and a clifferent velocity distribution (see fig. 1).
This comparison shows that the method proposed by Squ5re (reference 16)
gives heat-transfer coefficients which agree with the exact boundary-
Jayer solution to about the ssme degree as those of the method of the
equivalent wedge flow. The sane fact holds for the method indicated in
references X5 and 17 especially with the improvement given in refer-
ence 4. It can be stated in summary, therefore, that a ntier of methods
exist today which at least for the circilar cylinder permit the deter-
mination of heat-trasfer coefficients on solAd surfaces in the laminar
region of a gas ‘havingconstant property values with a very good accuracy.
The advantage of the equivalent wedge flow method over those methods
just discussed is that it gives solutions in a very short time and that
it can be readily extended to include variable property values and
transpiration cooling, as was done in this report. The wedge solution,
accor~ to ref=ence 7, is stilllmore rapid; however, the results
di.ffer from the experimental values up to 15 percent.

.. ______ _____________ __ .—— ._ —._ .—. —_____ ___ —.—— ___ . .
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Figure I-2gives the analogous results for an elliptic cylinder with
the axis ratio 1:2. It may be observed that heat-tran~fer coefficients
on wedges cliffer only slightly from those obtained for equivalent wedge-
type flow, whereas the fla.t-plate values and the ones calculated with
references 12 and 13 are considerably different. NO experimental
results nor solutions of the boundary-layer equations for a cylinder
with such a cross section which could be co-ed with the approximate
solutions are lnmwn to the’authors. A calculation with ~oujilinets
method presented in reference 22 ~ees well with the solutions obtained
with the equivalent wedge-type flow method. Separation of the flow
occurs on such a profile near x* = 0.8. Thestream velocities used are
calculated values contained in reference 22.

The &eement between the wedge solutions and the results obtained
by the method herein is still closer for the elliptic cylinder with axis
ratio 1:4 as ‘canbe seen from figure 13. The reason for this fact is
the type of stream velocity variation occurring on elliptic cylinders.
Flow separation occurs on this _cylindernear x* = 0.85. The cwves in
figures 12 and 13 show that the stream velocity is comparatively con-
stant over a considerable part of its ctictierence after a steep
increase near the stagnation point. This behavior is the more pro-
nounced for an axis ratio of 1:4 than-for one of 1:2. An inspection of
figure 13 showsthat, apart from the region near the stagnation point,
even the flat-plate values give a reasonably good approximation. Cal-
culations obtained by use of the dimensionless thermal boundary-layer
thiclmess extended,to the flow separation point; whereas those fm the
dimensionless convection boudary-layer thickness did not. It therefore
appesrs advisable to use the &bnensioaless theml boundary-layer
thickness.

Experimental heat-transfer coefficients found at the University of
Camornia for an elliptic cylind.erwith an axis ratio of 1:4 (ref-
mence 33) are about 50 percent higher than the theoretical values
shown in figure 13. There are several reasons fc?rthis discrepancy.
The measured stream velocity distribution was different from the one on
which the present calculations are based, probably because of a Umited
width of the wind tunnel. The cy13nder h the experimental investiga-
tionwas heatedby an electric resistance which produced a constant heat
flow through the surface per unit area. .Accordingly, the swface tem-
perature varied along the circumference of the cylinder, being lowest
at the forward stagnation point and ticreasing in downstream tiection.
Calculations b reference 33 indicate that the higher values found h
the tests are mostly due to this fact. Another increase of the experi-
mental heat-transfer coefficients may again be connected with the tur-
bulence level in the wind tunnel used as discussed in connection with
the test results on circular cylinders. ,

.. . . . . _______ . .. . ...- ___ .&____——.——. .-.— ~—. .—— . .. ——— .—— ---
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From figures Xl_to I-3,it may be concluded
a stream velocity winch is fairly constant over
circumference, local heat-transfer coefficients

NACA TN 2733

.
that, for cyllnders with
the greater part of the
may be obtained with

good accuracy from wedge solutions. In the regiOU in Which the stream
velocity variation is considerable, the method of the equivalent wedge
flow gives heat-transfer coefficientswith an accuracy sufficient for
engineering purposes.

Por-ousSurfaces

Heat-transfer coefficientswere calculatedly the method of the
equivalent wedge flow for cylinders with circular and elJ_ipticcross
~ections for transpiration-cooled surfaces and diff=ent temperature
ratios T’s/~,7by using either the thermal or the convection boundary-

layer thicbess (figs. 14 to 18). The use of both boundary-layer thick-
nesses gives different results only for large distances from the stag-
nation point. The variation of the heat-trsnsfer coefficientswith the
ratio of stream to wall temp=ature is comparatively smald.for so13_d
surfaces. This result is in agreement with pretious findings. For
transpiration-cooled sux’faces,however, the effect of the temperature
ratio on the heat-transfer coefficientsbecomes more pronounced, espe-
cially on cylinders with nearly circular cross sections. In refer-
ence 24 the case of transpiration cooling with small temperature differ-
ences is calculated; this reference includes the effect of the tempera-
te ratio by a correction factor which is based on the assumption that
t~s effect is the same as that determined experimentally for impermeable
surfaces. A comparison of results shows that the procedure in refer-
ence 24 underestimates the effect of temperature ratio for transptiation-
cooled surfaces. In addition, it canbe observed that transpiration
cooling results in a considerable decrease of the heat-tiansfer coeffi-
cients. A larger amount of coolant flow is necesssry to reduce the
heat-transfer coefficientsby the same amounts in regions in which the
heat-transfer coefficients are large. Such a region exists at the sta-g-
nation point on the cylinder with the axis ratio 1:2, and especially on
the cylinder with the axis ratio 1:4.

The variation in coolant flow required to maintain constant wall
temperature for transpiration-cooledcylinders with cticular and
elliptic cross sections is shown in figure 19. The calculationswere
made for a temperature ratio %./%? of 1, a value of Q of 0.5, and

a Prandtl ntier IT of 0.7. Figure 19 shows that the highest local
coolant-flow rates are necessary near the stagnation point in order to
keep the wall temperature down at that place. The magnitude of the
coolant-flow rate at the stagnation point is proportional.to the square
root of the velocity gradient du~dx*; this in turn is determined
mainly by the value of the radius of curvature at this point. As this

..——__ —— —.— ____ —.-. .. —- . ..._. . . . . .
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radius of curvature decreases, the required coolant flow increases.
This is in agreement with figure 19, which shows that the madmum coolant
flow is req~ed at the stagnation point of the elliptic cylinder with
the 1:4 axis ratio. Downstream of the stagnation point, the flow rates
decrease for each cylinder. Figure 19 also shows that the use of the
thermal rather than the convection boundary-layer thickness results in
only a very minor increase in coolant flow required to maintaim the
circular cylinder wall at a constant temperature.

EXD3NSION OF CALCUIATION TO HIGH-VIZOCITY FLOW

The heat generatedby internal friction was neglected in equa-
tion (5) according to the assumption of small velocities. The equation.

q= h(Ts-~) (42)

gives the heat-transfer coefficient for this case. It was already
explained that the inclusion of the internal friction for a gas with a
Prandtl n~er of 1 results only in the change that the temperature T
in equation (5) and the temperature T~ in equation (42) are now total
tempaatures, as long as the property values maybe regarded constant.
The heat-transfem coefficients determined in this report maybe used in
this case. It was shown in reference 34 with the use of results obtained
in reference 35 that the heat-trmfer coefficients determined for low-
velocity flow apply to high-velocity flow up to a Mach nuniberof about 4
for a gas with a Prandtl number different from 1, when the stream veloc-
ity is constant (flat plate) and the heat flow is not too large. The
heat-transfer coefficient, however, has now to be definedby the
equation

q= h(Tti-~) (43)

in which the temperature Tad denotes the value which an unheated-plate
assumes in the kl.gh-velocityflow. The adiabatic wall tempcwature may
be determined from the recovery factor

Tad-Ts
‘o = ‘T,S-TS

(44)

which was found to be equal-to ~~ for laminar flow and for Prandtl
numbers not too far from 1. The difference between the total and the
static temp=atures in the stream is connected with the stieam velocity
by the equation

,.2
‘s

‘T,S-TS = ~

.

(45)

. .. . . ....— _ .. . .. . ..—. ____ .-. .—.—.- ..—. —— -- .-. ,..—.
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For the flat plate with a constant stream velocity, the adiabatic wall
temperature is therefore constant.

Conditions sre more involved on a cyllnder with a stream velocity
which varies along its circumference.,Even when the”recovery factor is
assumed to be constant, equations (44) and (45) give an adiabatic wall
temperature which varies along the cticumferenc~ of the cylinder. The
fact that the low-velocity heat-tramfer coefficients also represented
the high-velocity values on a flat p~te~ however, followed from the
fact that the energy equation f-orconstant property values is linear in
T, and that a general solution of the nonhomogeneous equation describing
the.heat transfer including the internal friction could therefore be
obtained by superposition of the solution of the homogeneous equation
valid for small velocities and a particular solution of the nonhomo-
geneous equation. Such a superposition results in a constant wall tem-
perature on the flat plate when the solution of the homogeneous equation
for constant wall temperature and the one describing the adiabatic wall
temperature is used, since the adiabatic wall temperature is also con-
stant. For a cy13nder with an arbitrary cross section, however, the

.

adiabatic wall temperate which represents a particular solution of the -
nonhomogeneous equation varies along the circumference. ‘llherefore, a
superposition of this particular solution with the low-velocity solu-
tions for constant wall temperate does not give a constant wall tem-
perature, which was specified for the problems investigated in this
report. Accordingly, the
the eqwtion

in tich T= has to be

heat transfer has now to be calculated with

~ = h(Teff-Tw) (46)

determined for constant wall temperature con-

ditions, namely, as the temperalxme which a particular spot along the
surface for which the heat-transfer coefficient is to be determined
assumes when the heat flow through the wall at this particular spot is
zero and the wall temperature along the circumference of the cylindey is
constant.

For flow around wedges, this temperature, which may be referred to
as the neffective temperature~” can be.found from the results h refer-
ence 23. It is also determlaed fd several cases in reference 36. The
calculation procedure which determines this effective wall temperature
from reference 23 is described in appendix D. The calctiation shows
that this temperature may be again expressed by a recovery factor

Teff-Ts
ra k

‘T,S-TS

(47)

.

3
N
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The index m is used to indicate that such a recovery factor could be
determined experimentally by a model made of a material with a very
lmge heat conductivity so that the internal heat conduction would elti-
inate all temperature differences along the surface. On the other hand,
the recovery factor describing the adiabatic wall tempmature in equa-
tion (44) has to be determined experimentally by a model made of a
material with an infinitely small heat conductivity so as to e13minate
internal heat flow. Values for the recovery factor rm determining

the effective temperature of a wedge are presented in figure 20. The
recovery factors r. describing the adiabatic wall temperature accord-

ing to equation (44) have been calculated for wedges in ref~ence 7.
This calculation had resulted in values which decreased slightly with
increasing Euler number m. Repetition of these calculations on au
electric congmting machhe~ however, accordimg to a conmnmication from
Arthur N. Tifford of Ohio State University, showed that the recovery
factors for the adiabatic wall temperature sre practically independent
of the Euler nunkmr and have the same values as the recovery factor rm
shown in figure 20 for an Euler nuniber m equal to zero.

. The consideration up to now dealt with solid surfaces. No infor-
mation was found in the literature on recovery factors for transpiration-

1 cooled surfaces. Some recovti factors were therefore determined for a

I transpiration-cooledflat plate and a flow with constant property values
(the same for outside and coolant flow) by an integration of the

1 boundsry-layer equation (4). The titeigation was carried out in the
same way as in reference 5. The dimensionless stream function f and
its second derivative were taken from reference 29. The results of
this calculation are presented ,tifigure 21 and the following table

I where Ts/~f = 1 and Pr=o.7: ‘
1 . .

1 fw
I

[ -1
-.75
-.50
0
.?50

1

Recovery factor

o.713
.750
.786
.838
.874
.900

~.
The figure shows that the recovery factors decrease considerabl.ywith
increasing coolant flow. The calculations were extended to positive
values of f~r which apply to a surface with suction.

[
IX

It might be worthwhile to meution that,the accurate determinationI

of the adiabatic or effective wall.temperature a~eciably influences
the heat flow as calculated by equation (43) only when the difference

1
Tad-Tw is of the same order of magaitude as or of a small order of
magnitude than the difference TT,S-T9 (see also appendix D).

. ..— — ..- _.. ._.. _ .. . . . . . . .. _..__. .. . _______ ___ . . . .- ——- ——
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RESUT3!SAND CONCLUSIONS

JIACATN 2733

An approxhate method for the calculation of heat transfer in the
laminar region around cytiders of arbitrary cross section was presented.
The method, called the equivalent wedge-type flow method, is based on
exact solutions of the laminar boundary-layer equations for wedge-type
flow and.takes into account the influence of large temperature differ-
ences between the flow and the cylinder wall and the influence of tran-
spiration cooling. The use of prepared charts reduces calculations to
a graphical soltiion of an ordinary first-order differential equation.
The method canbe based either on the convection thickness or on the
thermal thiclmess of the boundary layer. The results of calculations
based on one thiclmess differ slightly from those based on the other
thickness. There are not enough experimental data available to decide
which boundary-layer thickness should be used. Near the separation
point, however, the results obtained with the thermal boundary-layer
thickness seem somewhat more plausible.

The method was applied to circ- and elliptic cyMnders. The
following results and conclusions sre given:

1. Results of aeriments and exact calculations were available
only for circular cylinders with solid surfaces. Calculations based on
the present method and on the thermal boundary-layer thickness agreed
within 5 percent with the exact calculation andtithin 8 percent with
experiment when the immediate neighborhood of the separation point was
excluded.

2. With the present method, heat-trmsfer coefficients maybe
obtained without a knowledge of the flow “t)oundarylayer. Consequently,
such calculations are more rapid than those based on the momentum and
heat-flow equations.

3. Heat-transfer coefficients determined from wedge solutions
agreed on the circular cylinder within X5 percent with the results of
~eriments. The calculation Procedure is still more rapid.

4. For elJ3.pticcylinders, the differences between the results of
calculations with the various methods decreased as the axis ratio
increased from 1:2 to 1:4.

5. The development of the boundary layer is determhedby the
velocity distribution around the cylinder. The accuracy which has to be
expected for the results of calculations with the different methods
will therefore depend on the’chwacter of the velocity distribution.

6. For cylinders with solid wallsj the variation of the heat-
trmsfer coefficients with ratio of stream to wall temperature was
comparatively small.

.-. — .—a __.... ____ ... . .___ ——. __ .-—— ——. .. .... ..
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7. For transpiration-cooled surfaces,‘theeffect of tempaature
ratio on heat-transfer coefficients became pronounced, especially on
cylindtis with nearly circular cross sections.

8. A considerable decrease in heat-transfer coefficients accompanied
transptiation cooling.

9. The influence of transpiration cooling on the recovay factor
was investigated for a flat plate and constant property values. It ~S

found that the recovery factor decreased considerabl.ywtth increasing
coolant flow.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Clevela~} Ohio, Much 19, 1952
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APPENDIX A

SYM80LS

The folJowing synibolsare used in this report:

Mmensionless” wall temperature gradient taken from references 22

rand 23, & 191}. .

constant

spectiic heat

function

dhensionless

heat-transfer

at constant pressure

stream function, (p#)/_~’
.

coefficient
,

thermal conductivity

characteristic dimension (~jor axis of cylinder)

(M = ~~2=M ~*6*,v;8~ (see equation (34))

Ner nuniber,
+

-ap axm PSUS2 # % = Cxm

(du~ )
—* 6Q, *V6* (see eqyation (37))%%” N ~

Nusselt nuniber,

??randtlnuniber,

pressure

heat fluw

approximateed heat flow

heat flow by conduction

-—— --—- .——--——--- ——_— ——___ ——-——. ——. — _.._— . ----
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I

I

,!
1

I

,

I
1-

,

~r

ReO

r.

u

us

*
‘s

x

X*

Y

z

%

!.

heat flow by radiation

/Reynolds nuaber~ us,OLPO l%

recovery factor defined

recovery factor defined

temperature in boundary

temperature in stresm

by (Tad-Ts)/(TT,s-Ts) (eq~tion (44))

by (Teft-Ts)/(@,s-Ts) (eqmtion (47))

layer

velocity component along surface.

free-stream velocity

dimensiotis~ DIRSSvelocity in free stream, p#s/pO~,O

velocity component normal to surface

(3@
dhensionless velocity normal to surface, —

F
e.

Pous,()

distance from stagnation point along surface

&hnensionless distance from stagnation point along surface, x/L

distance normal to surface

&.mensionless boundary-layer coordinate taken from references 22

F

I
and 23, +7

pressure gradient parameter, 2m/(m+l)

boundary-layer thickness

dimensionless boundary-layer thictiess, (~/L)E

convection boundsz-y-kyer thiclmess (equation (15)]

dimensionless convection boundary-layer thickpess, (5c/L)PO

.. —.- .-— —-—_ ..=. — .—. - .._ —...-. —_ ~ --—-——~—-—— ————



displacement boundary-layer

NACA TN 2733

.,

thickness (equation (13))

momentum boun@ry-layer thickness (equation (14))

thermal boundary-layer thiclmess (equation (16))

dtmensionless

dimensionless

dimensionless

,di.mensionless

thermal boundsry-layer thickness, (bt/L)=

boundaiy-layer rp@scoordinate, y —
kTx

temperature-tierence

temperature-difference

T-TIT
ratio, —

Ts-Tw

T-Ts
ratio,

‘T,S-TS

stream function taken from reference 26,
m+l

-T% .
u

absolute viscosity

kinematic viscosity, H/p

distance along wedge, tsken from references 22 and 23

density

dimensionlesss
Ts-T1r

temperature-differenceratio, ~
s- c

stream function

Subscripts:

ad atiabatic

c coolant, when used with T

eff effective

s stream

.

—-.-— - ————— .——-.-—.— .-—— —.—_.— _____ __ . ___ . .
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T total

w

o except when used with r, refers to a fixed point in the stream

Superscripts:

m exponent of distance along surface from stagnation petit for stre~

velocity, ~ = Cx? “

1 denotes differentiation with respect to ~

.

,-

1
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APPENDIX B

NACA TN 2733

EVALUATION OF HEAT-FZOW EQUATION

The energy equation (5) ktll be integrated along y throughout the
boundary layer under the conditions of small Mach number, constant wall
temperature, and constant specific heat

The ftist term on the left side can be transformed
tiation to

aT
Pu ~

An analogous transformation

-9=~(PuT)-T a:,

of the second term and

)$ ‘y
by partial differen-

consideration that
the temperature gradient &l?/~y is zero outside the boundary layer
(for y = ~) restit in “

The second snd fourth terms cancel because of
tion (3). In the first term, the sequence of
gation can be reversed. Introduction of the
the boundsry layer leads finally to the inte~ated heat-flow equation.

the continuity equa-
differentiation and inte-
convection thickness of

(Bl)

It will now he proved that equation (26), used for the method of the
equivalent wedge-type flow, is the same as this integrated heat-flow
equation when the convection thickness for the boundary layer is used.
Equation (Bl) maybe transformed by partial differentiation of the
first term into

(B2)

.— ____ . ..__ ___ ____ ____ ~_— .. —___________ ———. —____ ,_ ...-_ ., ----- .
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For wedge-type

33

flow, the convection thickness is given by the expression

Differentiation of this eqyation gives

Introducing this expression as well as equations (9) and
equation-(B2) gives the equation

(B3) .

(B4)

(12) into

(B5)

which interconnects the convection thickness with the dimensionless
temperature gradient at the wall. The gradieritof the convection thick-
ness may now be determined from the integrated energy equation (B2) when
the expressions in this equation we transformed to the new variables

Replacing the
equation (B5)

nondimensional
results in

temperature gradient in this eqmtion by

which is the same as eqpation (26).

It can also be proved by a completely analogous calculation that
the method of the equivalent wedge-type flow, when it is used to cal-
culate the momentum thickness of the flow boundsry layer, satisfies the
integrated momentum equation which is obtained from equation (2) by an
integration over y in a manner similar to the derivation of equa-
tion (Bl)

----- ..4 . —. -—--—- .—............_._ .. .. —...—.-— -—_— --——. — .— -......._ —- ....—-—-—
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DETERMDUTION OF WEDGE SOLUTIONS

The wedge solutions which-were used as a ftist approxhation in
figures M to 13 can he obtatied very easily wtth the use of figure 22
reproduced from reference 9. The heat-transfer coefficient has to be
determined on a wedge which has the same stresm vehcityand its gradient g
at the same distance from the stagnationToint as the real profile. The
Euler nmiber for this wedge canbe found from equation (23). In the
dimensionless coordinates it is

(cl)

The parameter fI~ which determines the coolant flow through the porous

wall is found from eqyation (20), which reads,
sionless quantities,

when converted to dtmen-

f 2

!

* x*
w = -—%m+l ~

s

The value (NIJ*) ‘@m

Nu/& is finally obtained

can be determined

by multiplication

(C2)

from figure 22, and

When the temperature ratio (p is prescribed, figure
from reference 9 canbe used to obtain the parameter fw

nmiber m. Eqyation (C2) then determines the value V$
tribution of the reqyired coolant flow along the profile.

23 reproduced
for anyNer

and the dis-

!

.
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APPENDIX D

I

DEIERUNATIONOF EFFECTIKEWALL ~

35

It is sho~m in reference 23 that for high-velocity flow of a fluid
with constant property values around a wedge with constant wall temper-
ature, the temperature field can be exyressed by the equation

T = (Tw-TT,s)(l-e) + (TT,s-Ts) $ +Ts , (Dl)

in which 19 represents the nondimensional temperature field for low-
velocity flow and d, the nondimensional temperature field for high-
velocity flow and a wall temperature equal to the total stream tempery
ature. The heat flow from the wall, obtained by differentiating equa-
tion (Dl), is,

With the

~w=-k(%)w=k[(T.~TTys)(%),T-(TTj~T.’(%)(D2)

eqmt ion

trsmsformations used in reference 23 (see also aypendix E)
.

u = Cxm
s

P=m% J
(D2) can be transformedinto

(D3)

@=*@[(TT~-TT,s)(~)w-’TTJs-Ts)(*)‘M)
This equation is to be brought into the form

\

(D5) ‘

.
----- . . ..—— .- —.-—--—.———— — ——----- —— --- - -—-.— —-—-— -- —.
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v

A comparison of equations (D4) and (D5) gives

~d~j—

TTT+t’eff= TTT-TT,s \ ‘z )7,- (TT,s-Ts) -

from vhich the difference between the total
tures can be found. The expression

‘T,s-Teff ~
TT,s-T~ = -&=-

(D6)

and effective gas tempera-

(D7)

recovery factor fm the.defines this temperature difference and the
effective wa13.temperature. The nondimensional temperature gradients
appearing on the right side of this equation are presented in refer-
ences 23 and 36. In this way, the values in figure 20 h~ve been deter-
mined.

To obtain an estimate of the conditions under which the difference
between the adiabatic wall temperature and the effective wall tempera-
ture maybe neglected, the heat flow into the wall-will be approximated
by the equation ,

(D8)

and the error of such an approximation will be determined. The ratio
of the exact heat-flow eqyation (D2) to the one approximated by equa-
tion (D8) is

Introducing the recovery factor

TT,5-!i?ad=

TT s-Ts

+ %~-Tad
(1 Eo)

for the adiabatic wall temperature

(1 -ro)(!CT,s-T’s)

.
.— —— . . .. . — ———. ——————— .Z ...— ._.._ ______ ..-._
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gives

37

For an Euler nuniberequal to 1, which characterizes flow near a stagna-
tion point and ~~hich,according to figure 20, shows a large difference
between the r~covery factors ro and rm, the error is smaller than
5 percent when

Tad-Tw

TT,S-TS

is larger than 2.5.

.

r

.
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APPENDIX E

COMPARISON OF VARIABLES

This ap~endix gives a comparison of the variables used in refer-
ences 9 and 25 with the ones used in references 22,”23, and 26. All of
these references deal with wedge-type flow

Synibolsfrom
references 9
and 25

m (13u)

fw

T

e,
w

Synibolsfrom
references 22,
23, and 26

$

A

z

A

Relation
‘among Sy’aibols

The values used in this report are related to the ones in the pre-
ceding references by the fold_owingequations:

IwFERENms

1. F&sling, Nils:
verteilung bei
lsminarer Grenzschichtstr&ung. Lunds Universitates Arss&ift,
N.F. Avd. 2, Bd. 36, I&. 4, 1940, S. 1-31.

Verdunstung, W&berg@ und Geschwindigkeits-
Zweidimensional-erund rotationssymmetrischer

2. Goland, LeOWd : A Theoretical Investigation of Heat Transfer in
the Laminsr Flow Regions bf Airfoils. Jour. Aero. Sci., vol. 17,
no. 7, July 1950, pp. 436-440.

I

——-— —-——— ..— ——.——. .—— — .___. —_____ —— —___— ._. . .. . . ... .



NACA TN 2733 39

3. Sears, W. R. : The Boundary Layer of Yawed Cylinders. Jour. Aero.
. Sci., vol. 15, no. 1, Jan. 1948, pp. 49-52.

4. Ttiford, Arthur N., and WOlansky, John: On the Calculatiorl-ofthe
Rate of Heat Transfer Through a Laminar Boundsxy Layer. Jour.
Aero. Sci., vol. 18, no. 6, June 1951, p. 427.

5. Po~auaen, E.: Der W&rmeaustausch zwischen festen K&pern und
Fl&8igkeiten mit kleiner Reikmng und Kleiner W&meleitung.
Z.f.a.M.M., Bd. 1, Heft 2, 1921, S. 115-121.

6. Boelter, L. M. K., Grossman, L. M., Martinelli, R. C., and Morrin,
E. H.: An Investigation of Aircraft Heaters. XXIX - Comparison of
Several Methods of Calculating Heat Iosses from Airfoils.
NACA TN 1453, 1948. ,

7. Eckert, E., and Drewitz, O.: Calculation of the Temperature Field
in the Lsminar Boundary Layer of an Unheated Body in a High Speed
Flow. R.T.P. ~~S. NO. 1594, M.A.P.

8. Ellerbrock, Herman H., Jr.: Some NACA Investigations of Heat-
Transfer Characteristics of Cooled Gas=Turbine Blades. Paper pre-
sented at the General Discussion on Heat Transfer. Inst. Mech.
Eng. (tindon) and A.S.M.E. (New York) Conference (London),
Sept. 11-13, 1951.

9. Bro~m, W. Byron: Exact Solution of the Lsminar Boundary Layer Ecnm-
tiobs for-a Porous Plate with Variable Fluid Properti&s..&d a -
Pressure Gradient in the Main Stresm. Paper presented before the
First U. S. National Congress of Applied Mechanics (Chicago),
June 11-16, 19,51.

10.

xl-.

12.

13.

von K&m&n, Th.: On Lminar and Turbulent Friction. NACA TM1092,
1946.

Pohlhausen, K.: Zur n~erungsweisen Integration der Differentisl-
gleichung der laminaren Grenzschicht. Z.f.a.M.M., Bd. 1, Heft 4,
Aug. 1921, S. 252-268.

Frick, Chsrles W. Jr., and McCullough, George B.: A Method for
Determining the Rate of Heat Transfer from a Wing or Streamline
Body. NACA Rep. 8%, 1945.

Allen, H. Julian, and Iook, Bonne C.: A Method for Calculating
Heat Transfer in the Laminsr Flow Region of Bodies. NACA
Rep. 764, 1943.

.

— — — . . . ---- ----— ——.--—- . ..-c -——— — .-————- -



40

14.

15.

16.

17.

18.

19.

20.

21.

22 ●

23.

24.

25.

fioujiline, G.”: Transmission of Heat
a Trsmsverse Current of Fluid. Sci.

NACA TN 2733 .

Past a Circular Cylimder in
Abstract, Sec. A-Physics,

vol. XXXIV, 1936, no. 4267. (Abstract from Tech. Phys.,-(U.S.-S.R.),
vol. 3, no. 4, 1936, pp. 311-320. (In French).)

Dienemann, W.: Calculation of the ThermalBoundary Iayer of a Body
in Incompressible Iaminar Flow. Jour. Aero. Sci., vol. 18, no. 1,
Jan. 1951, pP. 64-65.

Squire, H. B.: Heat’Transfer Calculation for Aerofoils. R. & M. j
No. 1986, British A.R.C., Nov. 1942.

Li@thill, M. J.:” Contributions-to the theory of heat transfer
through a laminar %oundary layer. Proc. Roy. Sot. (London),
ser. A, vol. 202, no. A1070, Aug. 7, 1950, pp. 359-377.

Tifford, Arthur N.: On the Theory of Heat Transfer Through a
Laminar Boundary Layer. Jour. Aero. Sci., vol. 18, no. 4,
April 1951, yp. 283-284.

Kalil&man, L. E.: Heat Transmission in the Boundary Layer.
NACATM 1229, 1949.

Ginzel, J.: Etil?ohlhausenverfshren zur Berechnung laminarer
ko~ressibler Grenzschichten an einer geheizten Wand. Z.f.a.M.M.,
Bd. 29, Heft 11/12, Nov./Dez. 1949, S. 21-337.

Kuerti, G.: The Laminar Boundary ~yer in Compressible Flow.
No. 496, Dept. of Eng., Harvard Univ. Pull., 1950-51. (Reprinted
from Advances inAppl. Mech., VO1. II, 1951, pp. 21-92.)

Eckert, E.: Die Berechnung des W&mefibagangs in der laminaren
Grenzschicht umstrbter K&per. VDI Forschungsheft 416, Bd. 13,
Sept. und Okti, 1942.

Schuh, H.: Iaudnsr Heat Transfer in Boundsry Layers at High Velo-
cities. Rep. & hms. 810, British M.A.P., April 15, 1947.

Staniforth, R.: Contributions to the Theory of Effusion Cooling of
Gas Turbine Blades. Paper presented at the General Discussion on
Heat Transfer. ~st. Mech. Eng. (bndon) and A.S.M.E. (New York)
Conference (London), Sept. lJ_-13,1951.

BroTm; W. Byronj and Donoughe, Patrick L.: Tables-of Exact Laminar- .

Boundary-Layer Solutions When the Wall is Porous and Fluid Proper-
ties are V=iable. NACATN 2479, 1951.

.

— -.—..—-. ——. _ .-.— _ —__ —— -—__ —.—.—— . _ ._ ._ .



6S

I
,.

i-

I

NACA TN 2733 41

26.

27.

28.

29.

30.

31.

32.

33.

Eckert, E. R. G.: Heat Transfer and -TemperatureProfiles in Laminar
Boundary Layers on a EhTeat-Cooled Wall. Tech. Rep. No. 5646, Air
Materiel Command, Nov. 3, 1947.

Tifford, Arthur N.: Simplified Compressible Lsminar Boundsry-Layer
Theory. Jour. Aero. Sci., vol. 18, no. 5, May 1951, pp. 358-359.

Howarth, L.: Concerning the Effect of Compressibility on Laminar
Boundary Layers and Their Separation. Proc. Roy. Sot. (London),
ser. A, -vol.194, 110. A1036, Jfiy 28, 1948, pp. 16-42.

Schlichting, Hermann, and ~SIWIU, Karl: Exa&e I&ungen fti die
lsmtnare Grenzschicht mit Absaugung und Ausblasen. Schriften d. D.
Akad. Luftfahrtforsc?mng,Bd. 7%, Heft 2, 1943.

Schmidt, Ernst, and Wenner, Kml: Heat Transfer over the Circum-
ference of a Heated Cylinder in Transverse Flow., NACA TM 1050, 1943.

Giedt, W. H.: Effect of Turbulence Level of Incident ~ Stream on
Local Heat Transfer and Skin Friction on a Cylinder. Jour. Aero.
Sci., vol. 18, no. 11, Nov. 1951, pp. 725-73(3. .

Gelder, Thomas F., and Lewis, Jsmes P.: Comparison of Heat Transfer
from Airfoil in Natural
NACA TN 2480, 1951.

Seban, R.,A., and Drake,

and Simulated Icing Conditions.

R. M., Jr.: Local Heat Transfer Coeffi-
cients on Surface of an
Stream. Series no. 41j
Cal.if.(Berkeley), Jan.
12941.)

34.,Eckert,E., and Drewitz,
at High Speed. NACA TM

Elliptical Cylinder in a High Speed Air
issue no. 6’,Engineering Dept., Univ.”of
10, 1952. (USAF-AMC Contract 33(038)-

0.: The Heat Transfer to a Plate in Flow
1045, 1943.

35. Busemann, A.: Gasstr&nung mit laminarer Grenzschicht entlang einer
Platte.-

36. Tifford,
I. Some
Station
p. 11.

1.

Z.f.a.M.M., 131.-15,Heft 1-2, Feb. 1935, S. 22-25.-

lmthur N.: Specific Aerodynamic and propulsion problems.
Prandtl lh.miber
News, The Ohio

Effects on theTransfer of Heat. Eng. Exp.
State Univ., vol. XXII, no. 1, Feb. 1950,

(

.

i

—.— .—..— —- —.—— — _—–—— --- . -— .—. .



42

~CA TN 2733

.

1.8

1.6

1.4

r

FQure 1 ● - ~eat-tr-fer coefficientfor cy~nwr

-%9=
(reference2)●

.

------- -.-———
.~ —-—-_ ————

.~––— ‘—



(
— -. .——— —. —

I .

%,0

i

Y Boun~ hyer

-tion
point

Figure 2. - Sketch or cylinder indicating notation used.



,-.

I

I

i.

I

.

(a) T~&, 1. h)
-1

p-s.--f~elnln * ~tion of 11 rm dlmrmlcmless oommtfon ~ ii.-layer tuchlena. Pi-,0,1.
m

Lr?w



—— ___ -. — — .-. _—__— ____ ..__ _______

,

.

(b) %’?w, e.

W 3. - Cmtiwed. Ohmt fcr U8E in deb~bi.m of M ?m Mmmicnlw om?eotd.an tandarr-lwer Qtitim. m-, 0.7,

IP
Cn

I



. . . . —

I

(

1’

I

I

I

~

I

~

,

,

I

!

H

. . .
. . L.iw.2 ‘ . .

I



i

. ..__— . ..———
2447 ,.

I



I

I

I

. N
-J
CN
CN

t
-. . .— . . .— LWZ”.

. . .



n

—
2447 , 4

Cn

(0) TA, 4,

Plgl+w 4. - Cmaludnd. _ f= w in detamim.tim of n rm. diwiuitis mmwtica ~-lwer thidmae. m-, 0,7. *
w



. .

50

11

de~ti.n of U

NACA TN 2733

.
(a) T~M, 1.,

rum MmeImlmluat W- bamdary-layar

=9=

thiaknem. Fr, 0.7.

.

—. —.—_— ____ ———— —.— ——_.



— .._—
2447 – ,

t

!4
2
w
CN

\

Cn
P



m
N

I

i

I

I

I

(c) ‘&Al.$ 4.

Pf.gom 6. - omalu&i. Chlrt [. - m M.-tlcm d m rvr aiurdmleea Glcrsll hG”m&ry-luyOr -,Mow . Fr, 0.1.

____



— . . .— -..-—— .- .-—-— .— --- .,

. 2447 ,

I

I

H

.

4

(a) T~, 1,



I

I

I

(

)

.N

.

.
Lw’z



I

———. -.—. .. —.-

.

—-—— —..— .—. -.— . .-—. — . .

Lt+z ‘

(0) T-, 4,

Riamw 8. - Cmwludecl. Ohe.rb fm ume b ddermbstim of n fm timimlem t~ b~-lwer bhiokaus. Pr, 0,7,
m
ci-



56

I

*
du:

dx*

1

20

10

8

6

4

2

. .0

.8

.6

.4

NACA TN.2733

.

Figure 7. -
convection

)

,

Chsrt for use h determinationof dimensionless
boundary-layerthicknessat stagnationpoint. .

—.—— _____ —. .. —__ —— __ . ...— .. —_.. . .



8S NACA TN 2733 . 57

.

,b

,;

.

,,

du;
—
ax*

2

20

10

8

6

4

2

1
-o .2

Figure 8. - Chart for use
thermalboundary-layer

.4 .6
*z

VW

(31@x”

.8 ~ 1.0

in determinationof d3metiionless
thicknessat stagnationpoint.

... . . .._.. ____ ___ ____ ...---- ,__ —- . .. —-....- ---- _ ——. . ..-. .——.—. ——..—-. .



Figure 9. - Isoclinesolutionof
equation.

,

boundary-layer

I

I

NACA TN 2733

.

--—- ——— -1 ‘Boundarylayer~.

hside

Figure 10. - Cross sectionthroughpa% of cylinderwall
used in settingup heat ImJ.ante.

—— —_ _—___ _____ ___ . ..=---- ______ __________________ _< . ..———- .._.



t

.
,,

NACA TN 2733 59

2.0 1 1

v.
1.5

ReferenceU \

1.8 \ 1.0
●

%
\ .5 / /

Reference12

\1°”2~”’”7
1.6

\
\

r.4

.

1.2 \

\
\

—.-
-

\
1.0 _ —. ._ -— reference W),

.sxper@nt.al
\

\

.8 /
Reference 1

.6

I .

.4
0 .1 .2 .3 ● .4’ .5 .6 .7

x

Figwe11.- C_lson of&resentneth~tithfmmsrlyusedmethmlsforcalculation
oflocalheat-transfercoefficientsaroundcticularcyllnderwithi.n’pam~ablewall.
V% o;=> 0“7;.TEj~>1.

-—. —..—______ .. _______ _ .



60 N(M3A TN 2733

.

2.0 - 1 I

Reference 13

1.5

1.8 1.0

Reference12 ●

\ %
.5

1.6
\\

\ o

\

1.4
\ \

\

1.2 \

\

1.0‘
\

\ \

\’ \\
/Y \
-17*

.8
Y \

Flatplate

\ \ \

.6 \ \ \
/-8;

\’ \

.4 ~~

.2 F

.2 .4 .6 .8
*

x 1

0 .1 .2 .3 -4 .5 .6 .7
x*

Figm=12.-C~on of-sent methcdwithfannerlyusedmethodsfor calculation
of local heat-transfercoefficientsaround ellQtic cyllnderwith axis ratio of
1:2. & 0; => o.~; T&J 1-

.

——————_ . . .



NACA TN 2733 61

.
.

.

3.2
.

2.8

\2.4
0 .2 .4 .6

\

2.0

& 1.6 -

\

1.2

. 8 I

. 4

.
0 .1 .2 .3 * .4 .5 .6 .7

x.

Fl@me 13. - Cmparison of present methcd with fo~ly usedBthcdsforcalculation
of loca+ heat-_&ansfercoefficientsaround elliptic cyMder with axis ratio of
1:4. S/VW, 0; R, 0.7j T ~> 1.

-.. .—.... . ...--— — ...—.-. _.. —___.._____ _____ ._. ._ - —... .--— .—



62 NACA TN 2733

.

1.0‘

.9
I I I I -l I I

.

~
\

2

l---l---L I ‘h.1
——— ——-— 4

,

‘\

\N
.

\
.

.

.8 -
\ . 7 \

.

\
‘ \\

.7”‘
.

.6

g

.5

I I II I I Y

.-

I--+ -4--I I I \
. . \ \ \ \

.4’
\

~.

.
\

\
x

\
\

\
\

N
\

.3
\

\

\ \
\. \

\ \
\

.2” \ \

.1- 1
0 .1 .2 .3 .4 .5 .6 .7

●
x
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